
FIRST-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP)1 OBSERVATIONS:
IMPLICATIONS FOR INFLATION

H. V. Peiris,
2
E. Komatsu,

2
L. Verde,

2,3
D. N. Spergel,

2
C. L. Bennett,

4
M. Halpern,

5
G. Hinshaw,

4

N. Jarosik,
6
A. Kogut,

4
M. Limon,

4,7
S. S. Meyer,

8
L. Page,

6
G. S. Tucker,

4,7,9

E.Wollack,
4
and E. L. Wright

10

Received 2003 February 11; accepted 2003May 13

ABSTRACT

We confront predictions of inflationary scenarios with the Wilkinson Microwave Anisotropy Probe
(WMAP) data, in combination with complementary small-scale cosmic microwave background (CMB)
measurements and large-scale structure data. The WMAP detection of a large-angle anticorrelation in the
temperature-polarization cross-power spectrum is the signature of adiabatic superhorizon fluctuations at the
time of decoupling. TheWMAP data are described by pure adiabatic fluctuations: we place an upper limit on
a correlated cold dark matter (CDM) isocurvature component. UsingWMAP constraints on the shape of the
scalar power spectrum and the amplitude of gravity waves, we explore the parameter space of inflationary
models that is consistent with the data. We place limits on inflationary models; for example, a minimally
coupled ��4 is disfavored at more than 3 � using WMAP data in combination with smaller scale CMB and
large-scale structure survey data. The limits on the primordial parameters using WMAP data alone are
nsðk0 ¼ 0:002 Mpc�1Þ ¼ 1:20þ0:12

�0:11, dns=d ln k ¼ �0:077þ0:050
�0:052, Aðk0 ¼ 0:002 Mpc�1Þ ¼ 0:71þ0:10

�0:11 (68% CL),
and rðk0 ¼ 0:002 Mpc�1Þ < 1:28 (95%CL).

Subject headings: cosmic microwave background — cosmology: observations — early universe

1. INTRODUCTION

An epoch of accelerated expansion in the early universe,
inflation, dynamically resolves cosmological puzzles such as
homogeneity, isotropy, and flatness of the universe (Guth
1981; Linde 1982; Albrecht & Steinhardt 1982; Sato 1981)
and generates superhorizon fluctuations without appealing
to fine-tuned initial setups (Mukhanov & Chibisov 1981;
Hawking 1982; Guth & Pi 1982; Starobinsky 1982; Bardeen,
Steinhardt, & Turner 1983; Mukhanov, Feldman, &
Brandenberger 1992). During the accelerated expansion
phase, generation and amplification of quantum fluctua-
tions in scalar fields are unavoidable (Parker 1969; Birrell &
Davies 1982). These fluctuations become classical after
crossing the event horizon. Later during the deceleration
phase, they reenter the horizon and seed the matter and the
radiation fluctuations observed in the universe.

The majority of inflation models predict Gaussian,
adiabatic, nearly scale-invariant primordial fluctuations.
These properties are generic predictions of inflationary

models. The cosmic microwave background (CMB) radia-
tion anisotropy is a promising tool for testing these proper-
ties, as the linearity of the CMB anisotropy preserves basic
properties of the primordial fluctuations. In companion
papers, Spergel et al. (2003) find that adiabatic scale-invari-
ant primordial fluctuations fit the Wilkinson Microwave
Anisotropy Probe (WMAP) CMB data, as well as a host of
other astronomical data sets including the galaxy and the
Ly� power spectra; Komatsu et al. (2003) find that the
WMAP CMB data are consistent with Gaussian primordial
fluctuations. These results indicate that predictions of the
most basic inflationary models are in good agreement with
the data.

While the inflation paradigm has been very successful,
radically different inflationary models yield similar predic-
tions for the properties of fluctuations: Gaussianity, adiaba-
ticity, and near scale invariance. To break the degeneracy
among the models, we need to measure the primordial fluc-
tuations precisely. Even a slight deviation from Gaussian,
adiabatic, nearly scale-invariant fluctuations can place
strong constraints on the models (Liddle & Lyth 2000). The
CMB anisotropy arising from primordial gravitational
waves can also be a powerful method for model testing. In
this paper we confront predictions of various inflationary
models with the CMB data from theWMAP, Cosmic Back-
ground Imager (CBI; Pearson et al. 2002), and Arcminute
Cosmology Bolometer Array Receiver (ACBAR; Kuo et al.
2002) experiments, as well as the Two-Degree Field Galaxy
Redshift Survey (2dFGRS; Percival et al. 2001) and Ly�
power spectra (Croft et al. 2002; Gnedin &Hamilton 2002).

This paper is organized as follows. In x 2 we show that the
WMAP detection of an anticorrelation between the temper-
ature and the polarization fluctuations at ‘ � 150 is the dis-
tinctive signature of adiabatic superhorizon fluctuations.
We compare the data with specific predictions of inflation-
ary models: single-field models in x 3 and double-field
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models in x 4. We examine the evidence for features in the
inflation potential in x 5. Finally, we summarize our results
and draw conclusions in x 6.

2. IMPLICATIONS OF WMAP ‘‘ TE ’’ DETECTION FOR
THE INFLATIONARY PARADIGM

A fundamental feature of inflationary models is a period
of accelerated expansion in the very early universe. During
this time, quantum fluctuations are highly amplified, and
their wavelengths are stretched to outside the Hubble hori-
zon. Thus, the generation of large-scale fluctuations is an
inevitable feature of inflation. These fluctuations are coher-
ent on what appear to be superhorizon scales at decoupling.
Without accelerated expansion, the causal horizon at
decoupling is �2�. Causality implies that the correlation
length scale for fluctuations can be no larger than this scale.
Thus, the detection of superhorizon fluctuations is a
distinctive signature of this early epoch of acceleration.

The COBE Differential Microwave Radiometer (DMR)
detection of large-scale fluctuations has been sometimes
described as a detection of superhorizon scale fluctuations.
While this is the most likely interpretation of the COBE
results, it is not unique. There are several possible mecha-
nisms for generating large-scale temperature fluctuations.
For example, texture models predict a nearly scale-invariant
spectrum of temperature fluctuations on large angular
scales (Pen, Spergel, & Turok 1994). The COBE detection
sounded the death knell for these particular models not
through its detection of fluctuations, but as a result of the
low amplitude of the observed fluctuations. The detection
of acoustic temperature fluctuations is also sometimes
evoked as the definitive signature of superhorizon scale fluc-
tuations (Hu & White 1997). String and defect models do
not produce sharp acoustic peaks (Albrecht et al. 1996;
Turok, Pen, & Seljak 1998). However, the detection of
acoustic peaks in the temperature angular power spectrum
does not prove that the fluctuations are superhorizon, as
causal sources acting purely through gravity can exactly
mimic the observed peak pattern (Turok 1996a, 1996b). The
recent study of causal seed models by Durrer, Kunz, &
Melchiorri (2002) shows that they can reproduce much of
the observed peak structure and provide a plausible fit to
the pre-WMAPCMB data.

The large-angle (50d‘d150) temperature-polarization
anticorrelation detected by WMAP (Kogut et al. 2003) is a
distinctive signature of superhorizon adiabatic fluctuations
(Spergel & Zaldarriaga 1997). The reason for this conclu-
sion is explained as follows. Throughout this section we
consider only scales larger than the sound horizon at the
decoupling epoch. Zaldarriaga & Harari (1995) show that,
in the tight coupling approximation, the polarization signal
arises from the gradient of the peculiar velocity of the
photon fluid,�1,

DE ’ �0:17 1� l2
� �

D�deck�1ð�decÞ ; ð1Þ

where DE is the E-mode (parity-even) polarization fluctua-
tion, �dec is the conformal time at decoupling, D�dec is the
thickness of the surface of last scattering in conformal time,
and l ¼ cosðk̂k x n̂nÞ. The velocity gradient generates a quad-
rupole temperature anisotropy pattern around electrons,
which, in turn, produces the E-mode polarization. Note that
while reionization violates the assumptions of tight

coupling, the existence of clear acoustic oscillations in the
temperature-polarization (TE) and temperature-tempera-
ture (TT) angular power spectra implies that most (�85%)
CMB photons detected by WMAP did indeed come from
z ¼ 1089 where the tight coupling approximation is valid.
The velocity�1 is related to the photon density fluctuations,
�0, through the continuity equation, k�1 ¼ �3 _��0 þ _��

� �
,

where � is Bardeen’s curvature perturbation. The observ-
able temperature fluctuations on large scales are approxi-
mately given by DT ¼ �0ð�decÞ þ�ð�decÞ, where � is the
Newtonian potential, which equals �� in the absence of
anisotropic stress. Therefore, roughly speaking, the photon
density fluctuations generate temperature fluctuations,
while the velocity gradient generates polarization
fluctuations.

The tight coupling approximation implies that the baryon
photon fluid is governed by a single second-order differen-
tial equation that yields a series of acoustic peaks (Peebles &
Yu 1970; Hu & Sugiyama 1995):

€��0 þ €��
� �

þ
_aa

a

R

1þ R
_��0 þ _��
� �

þ k2c2s ð�0 þ �Þ

¼ k2 c2s���

3

� �
; ð2Þ

where the sound speed cs is given by c2s ¼ 3ð1þ RÞ½ ��1. The
large-scale solution to this equation is (Hu & Sugiyama
1995)

�0ð�Þ þ �ð�Þ ¼ �0ð0Þ þ �ð0Þ½ � cosðkcs�Þ

þ kcs

Z �

0

d�0 � �0ð Þ �� �0ð Þ½ �

� sin kcs � � �0ð Þ½ � ; ð3Þ

and the continuity equation gives the solution for the
peculiar velocity,

1

3cs
�1ð�Þ ¼ �0ð0Þ þ �ð0Þ½ � sinðkcs�Þ

� kcs

Z �

0

d�0 � �0ð Þ �� �0ð Þ½ � cos kcs � � �0ð Þ½ � :

ð4Þ

These solutions (eqs. [1], [3], and [4]) are valid regardless of
the nature of the source of fluctuations.

In inflationary models, a period of accelerated expansion
generates superhorizon adiabatic fluctuations, so that the
first term in equations (3) and (4) is nonzero. Since � ’ ��
and �0ð0Þ þ �ð0Þ ¼ 3=2ð Þ�ð0Þ ¼ 5=3ð Þ�ð�decÞ on super-
horizon scales, one obtains DT ’ �1

3�ð�decÞ cosðkcs�decÞ
and DE ’ 0:17 1� l2ð ÞkcsD�dec�ð�decÞ sinðkcs�decÞ (for deri-
vation see Hu & Sugiyama 1995; Zaldarriaga & Harari
1995). Therefore, the cross-correlation is found to be

DTDEh i ’ �0:03 1� l2
� �

ðkcsD�decÞP�ðkÞ sinð2kcs�decÞ ;
ð5Þ

where P�(k) is the power spectrum of �(�dec). The observ-
able correlation function is estimated as k3hDTDEi. Clearly,
there is an anticorrelation peak near kcs�dec � 3�=4, which
corresponds to ‘ � 150: this is the distinctive signature of
primordial adiabatic fluctuations. In other words, the anti-
correlation appears on superhorizon scales at decoupling
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because of the modulation between the density mode,
cosðkcs�decÞ, and the velocity mode, sinðkcs�decÞ, yielding
sinð2kcs�decÞ, which has a peak on scales larger than the
horizon size, c�dec ’

ffiffiffi
3

p
cs�dec.

Cosmic strings and textures are examples of active
models. In these models, causal field dynamics continuously
generate spatial variations in the energy density of a field.
Magueijo et al. (1996) describe the general dynamics of
active models. These models do not have the first term in
equations (3) and (4), but the fluctuations are produced by
the second term, the growth of � and �. The same applies
to primordial isocurvature fluctuations, where the non-
adiabatic pressure causes � and � to grow. While the
problem is more complicated, these models give a positive
correlation between temperature and polarization fluctua-
tions on large scales. This positive correlation is predicted
not just for texture (Seljak, Pen, & Turok 1997) and scaling
seed models (Durrer et al. 2002) but is the generic signature
of any causal models (Hu &White 1997)11 that lack a period
of accelerated expansion.

Figure 1 shows the predictions of the TE large-angle
correlation predicted in typical primordial adiabatic, iso-
curvature, and causal scaling seed models compared with
the WMAP data. The causal scaling seed model shown is a
flat Family I model in the classification of Durrer et al.
(2002) that provided a good fit to the pre-WMAP
temperature data.

The WMAP detection of a TE anticorrelation at
‘ � 50 150, scales that correspond to superhorizon scales at
the epoch of decoupling, rules out a broad class of active

models. It implies the existence of superhorizon, adiabatic
fluctuations at decoupling. If these fluctuations were
generated dynamically rather than by setting special initial
conditions, then the TE detection requires that the universe
had a period of accelerated expansion. In addition to infla-
tion, the pre–big bang scenario (Gasperini & Veneziano
1993) and the ekpyrotic scenario (Khoury et al. 2001, 2002)
predict the existence of superhorizon fluctuations.

3. SINGLE-FIELD INFLATION MODELS

In this section we explore how predictions of specific
models that implement inflation (for a survey see Lyth &
Riotto 1999) compare with current observations.

3.1. Introduction

The definition of ‘‘ single-field inflation ’’ encompasses the
class of models in which the inflationary epoch is described
by a single scalar field, the inflaton field. We also include a
class of models called ‘‘ hybrid ’’ inflation models as single-
field models. While hybrid inflation requires a second field
to end inflation (Linde 1994), the second field does not con-
tribute to the dynamics of inflation or the observed fluctua-
tions. Thus, the predictions of hybrid inflation models can
be studied in the context of single-field models.

During inflation the potential energy of the inflaton
field V dominates over the kinetic energy. The Friedmann
equation then tells us that the expansion rate, H, is
nearly constant in time: H � _aa=a ’ M�1

Pl ðV=3Þ1=2, where
MPl � ð8�GÞ�1=2 ¼ mPl=

ffiffiffiffiffiffi
8�

p
¼ 2:4� 1018 GeV is the

reduced Planck energy. The universe thus undergoes an
accelerated expansion phase, expanding exponentially as
aðtÞ / expð

R
H dtÞ ’ expðHtÞ. One usually uses the e-folds

remaining at a given time, N(t), as a measure of how much
the universe expands from t to the end of inflation, tend:
NðtÞ � ln½aðtendÞ� � ln½aðtÞ� ¼

R tend
t HðtÞdt. It is known that

flatness and homogeneity of the universe require
NðtstartÞ > 50, where tstart is the time at the onset of inflation
(i.e., the universe needs to be expanded to at least
e50 ’ 5� 1021 times larger by tend). The accelerated expan-
sion of this amount dilutes any initial inhomogeneity and
spatial curvature until they become negligible in the
observable universe today.

3.2. Framework for Data Analysis

3.2.1. Parameterizing the Primordial Power Spectra

The power spectrum of the CMB anisotropy is deter-
mined by the power spectra of the curvature and tensor
perturbations. Most inflationary models predict scalar and
tensor power spectra that approximately follow power
laws: D2

RðkÞ � k3=ð2�2Þh Rkj j2i / kns�1 and D2
hðkÞ � 2k3=

ð2�2Þh hþkj j2þ h�kj j2i / knt . Here R is the curvature pertur-
bation in the comoving gauge and h+ and h� are the two
polarization states of the primordial tensor perturbation.
The spectral indices ns and nt vary slowly with scale or not at
all. As spectral indices deviate more and more from scale
invariance (i.e., ns ¼ 1 and nt ¼ 0), the power-law approxi-
mation usually becomes less and less accurate. Thus, in
general, one must consider the scale-dependent ‘‘ running ’’
of the spectral indices, dns=d ln k and dnt=d ln k. We

11 Hu & White (1997) use an opposite sign convention for the TE
cross-power spectrum.

Fig. 1.—Temperature-polarization angular power spectrum. The large-
angle TE power spectrum predicted in primordial adiabatic models (solid
line), primordial isocurvature models (dashed line), and causal scaling seed
models (dotted line) is shown. The WMAP TE data (Kogut et al. 2003) are
shown for comparison, in bins ofD‘ ¼ 10.
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parameterize these power spectra by

D2
RðkÞ ¼ D2

Rðk0Þ
k

k0

� �nsðk0Þ�1þ 1=2ð Þðdns=d ln kÞ lnðk=k0Þ
; ð6Þ

D2
hðkÞ ¼ D2

hðk0Þ
k

k0

� �ntðk0Þþ 1=2ð Þðdnt=d ln kÞ lnðk=k0Þ
; ð7Þ

where D2(k0) is a normalization constant and k0 is some
pivot wavenumber. The running, dn=d ln k, is defined by
the second derivative of the power spectrum, dn=d ln k �
d2D2=d ln k2, for both the scalar and the tensor modes and is
independent of k. This parameterization gives the definition
of the spectral index,

nsðkÞ � 1 �
d lnD2

R

d ln k
¼ nsðk0Þ � 1þ dns

d ln k
ln

k

k0

� �
ð8Þ

for the scalar modes and

ntðkÞ �
d lnD2

h

d ln k
¼ ntðk0Þ þ

dnt
d ln k

ln
k

k0

� �
ð9Þ

for the tensor modes. In addition, we reparameterize the
tensor power spectrum amplitude, D2

hðk0Þ, by the ‘‘ tensor/
scalar ratio r,’’ the relative amplitude of the tensor to scalar
modes, given by12

r � D2
hðk0Þ

D2
Rðk0Þ

: ð10Þ

The ratio of the tensor quadrupole to the scalar quadrupole,
r2, is often quoted when referring to the tensor/scalar ratio.
The relation between r2 and the definition of the tensor/

scalar ratio above is somewhat cosmology dependent. For
an SCDMuniverse with no reionization, it is

r2 ¼ 0:8625r : ð11Þ

For comparison, for the maximum likelihood single-field
inflation model for the WMAPext+2dFGRS data sets pre-
sented in the table notes of Table 1, this relation is
r2 ¼ 0:6332r.

Following notational conventions in Spergel et al. (2003),
we use A(k0) for the scalar power spectrum amplitude,
whereA(k0) and D2

Rðk0Þ are related through

D2
Rðk0Þ ¼ 800�2 5

3

� �2 1

T2
CMB

Aðk0Þ ð12Þ

’ 2:95� 10�9Aðk0Þ : ð13Þ

Here TCMB ¼ 2:725� 106 (lK). This relation is derived in
Verde et al. (2003). One can use equations (6), (8), and (9) to
evaluate A, ns, and nt at a different wavenumber from k0,
respectively. Hence,

Aðk1Þ ¼ Aðk0Þ
k1
k0

� �nsðk0Þ�1þ 1=2ð Þðdns=d ln kÞ lnðk1=k0Þ
: ð14Þ

We have six observables (A, r, ns, nt, dns=d ln k,
dnt=d ln k), each of which can be compared to predictions of
an inflationary model.

The complementary approach (which we do not investi-
gate in this work) is to parameterize the primordial power
spectrum in a model-independent way (see, for example,
Wang, Spergel, & Strauss 1999). These authors anticipated
that WMAP has the potential ability to reveal deviations
from scale invariance when combined with large-scale struc-
ture data. Mukherjee & Wang (2003a, 2003b) extend this
approach and use it to put model-independent constraints

TABLE 1

Parameters For Primordial Power Spectra: Single-Field Inflation Model

Parameter WMAPa WMAPext+2dFGRSa WMAPext+2dFGRS+Ly�a

ns(k0 ¼ 0:002Mpc�1) .............. 1:20þ0:12
�0:11 1:18þ0:12

�0:11 1.13� 0.08

r(k0 ¼ 0:002Mpc�1) ............... <1.28/0.81/0.47b <1.14/0.53/0.37b <0.90/0.43/0.29b

dns=d ln k ................................ �0:077þ0:050
�0:052 �0:075þ0:044

�0:045 �0:055þ0:028
�0:029

A(k0 ¼ 0:002Mpc�1) .............. 0:71þ0:10
�0:11 0.73� 0.09 0:75þ0:08

�0:09

�bh
2 ........................................ 0.024� 0.002 0.023� 0.001 0.024� 0.001

�mh
2........................................ 0.127� 0.017 0.134� 0.006 0.134� 0.006

h.............................................. 0.78� 0.07 0:75þ0:03
�0:04 0.75� 0.03

� .............................................. 0.22� 0.06 0.20� 0.06 0.18� 0.06

�8 ............................................ 0:82þ0:13
�0:12 0.85� 0.05 0.85� 0.05

a The quoted values are the mean and the 68% probability level of the one-dimensional marginalized likelihood.
For bothWMAPext+2dFGRS andWMAPext+2dFGRS+Ly� data sets, the 10-dimensional maximum likelihood
point in the Markov chain (1:5� 106 steps) for this model is [�bh2 ¼ 0:024, �mh2 ¼ 0:132, h ¼ 0:77,
nðk0:002Þ ¼ 1:15, rðk0:002Þ ¼ 0:42, dns=d ln k ¼ �0:052, Aðk0:002Þ ¼ 0:75, � ¼ 0:21, �8 ¼ 0:87]. Here k0.002 is
k0 ¼ 0:002 Mpc�1. The maximum likelihood model in the MCMC using WMAP data alone is [�bh2 ¼ 0:023,
�mh2 ¼ 0:122, h ¼ 0:79, nðk0:002Þ ¼ 1:27, rðk0:002Þ ¼ 0:56, dns=d ln k ¼ �0:10, Aðk0:002Þ ¼ 0:74, � ¼ 0:29]. Great
care must be taken in interpreting this point. It is given here for completeness only, and we do not recommend it for
use in any analysis. There is a long, flat degeneracy between n and � , as described in x 3 of Spergel et al. (2003), and
this point happened to lie at the very blue edge of this degeneracy right at the edge of our upper limit prior on � . This
Markov chain had extra freedom because we are adding three parameters over the model discussed in Spergel et al.
(2003), thereby introducing significant new degeneracies (see Fig. 3).

b The 95% upper limits for the tensor-scalar ratio are quoted for various priors in the following order: no prior on
dns=d ln k or ns, dns=d ln k ¼ 0, ns < 1. The priors were applied to the output of theMCMC.

12 This definition of r agrees with the definition of T/S in the CAMB
code (Lewis, Challinor, & Lasenby 2000) and r in Leach et al. (2002). We
have modified CMBFAST (Seljak & Zaldarriaga 1996) accordingly to
match the same convention.
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on the primordial power spectrum using the pre-WMAP
CMB data.

3.2.2. Slow-Roll Parameters

In the context of slow-roll inflationary models, only three
‘‘ slow-roll parameters,’’ plus the amplitude of the potential,
determine the six observables (A, r, ns, nt, dns=d ln k,
dnt=d ln k). Thus, one can use the relations among the
observables to either reduce the number of parameters to
four or cross-check if the slow-roll inflation paradigm is
consistent with the data. The slow-roll parameters are
defined by (Liddle & Lyth 1992, 1993)

�V �
M2

Pl

2

V 0

V

� �2

; ð15Þ

�V � M2
Pl

V 00

V

� �
; ð16Þ

	V � M4
Pl

V 0V 000

V 2

� �
; ð17Þ

where primes denote derivatives with respect to the field �.
Here �V quantifies ‘‘ steepness ’’ of the slope of the potential,
which is positive-definite, �V quantifies ‘‘ curvature ’’ of the
potential, and 	V (which is not positive-definite but is
unfortunately often denoted 	2 in the literature because it is
a second-order parameter) quantifies the third derivative of
the potential, or ‘‘ jerk.’’ All parameters must be smaller
than 1 for inflation to occur. We denote these ‘‘ potential
slow-roll ’’ (PSR) parameters with a subscript V to distin-
guish them from the ‘‘Hubble slow-roll ’’ parameters of the
Appendix. Gratton et al. (2003) discuss the equivalent set of
parameters for the ekpyrotic scenario.

Parameterization of slow-roll models by �V, �V, and 	V
avoids relying on specific models and enables one to explore
a large model space without assuming a specific model.
Each inflation model predicts the slow-roll parameters and
hence the observables. A standard slow-roll analysis gives
observable quantities in terms of the slow-roll parameters to
first order as (for a review see Liddle & Lyth 2000)

D2
R ¼ V=M4

Pl

24�2�V
; ð18Þ

r ¼ 16�V ; ð19Þ

ns � 1 ¼ �6�V þ 2�V ¼ � 3r

8
þ 2�V ; ð20Þ

nt ¼ �2�V ¼ � r

8
; ð21Þ

dns
d ln k

¼ 16�V�V � 24�2V � 2	V ¼ r�V � 3

32
r2 � 2	V

¼ � 2

3
ns � 1ð Þ2�4�2V

h i
� 2	V ; ð22Þ

dnt
d ln k

¼ 4�V�V � 8�2V ¼ r

8
ns � 1ð Þ þ r

8

h i
: ð23Þ

The tensor tilt in inflation is always red, nt < 0. The
equation nt ¼ �r=8 is known as the consistency relation for
single-field inflation models (it weakens to an inequality for
multifield inflation models). We use the relation to reduce
the number of parameters. While we have also carried out
the analysis including nt as a parameter and verified that
there is a parameter space satisfying the consistency rela-
tion, including nt obviously weakens the constraints on the

other observables. Given that we find that r is consistent
with zero (x 3.3), the running tensor index dnt=d ln k is
poorly constrained with our data set; thus, we ignore it and
constrain our models using the other four observables (A, r,
ns, dns=d ln k) as free parameters.

3.3. Determining the Power Spectrum Parameters

We use a Markov Chain Monte Carlo (MCMC) techni-
que to explore the likelihood surface. Verde et al. (2003)
describe our methodology. We use the WMAP TT
(Hinshaw et al. 2003) and TE (Kogut et al. 2003) angular
power spectra. To measure the shape of the spectrum (i.e.,
ns and dns=d ln k) accurately, we want to probe the primor-
dial power spectrum over as wide a range of scales as possi-
ble. Therefore, we also include the CBI (Pearson et al. 2002)
and ACBAR (Kuo et al. 2002) CMB data, Ly� forest data
(Croft et al. 2002; Gnedin & Hamilton 2002), and the
2dFGRS large-scale structure data (Percival et al. 2001) in
our likelihood analysis. We refer to the combined
WMAP+CBI+ACBAR data asWMAPext.

In total, the single-field inflation model is described by an
eight-parameter model: four parameters for characterizing
a Friedmann-Robertson-Walker universe (baryonic density
�bh

2, matter density �mh
2, Hubble constant in units of 100

km s�1 Mpc�1 h, optical depth �) and four parameters for
the primordial power spectra (A, r, ns, dns=d ln k). When we
add 2dFGRS data, we need two further large-scale structure
parameters, 
 and �p, to marginalize over the shape and the
amplitude of the 2dFGRS power spectrum (Verde et al.
2003). We run MCMC with these eight (WMAP-
only model) or 10 (WMAPext+2dFGRS, WMAPext+
2dFGRS+Ly� models) parameters in order to get our
constraints.

The priors on the model are a flat universe, a cosmo-
ogical constant equation of state for the dark energy, and a
restriction of � < 0:3.

Table 1 shows results of our analysis for the WMAP,
WMAPext+2dFGRS, and WMAPext+2dFGRS+Ly�
data sets. We evaluate ns, A, and r in the fit at k0 ¼ 0:002
Mpc�1. Thus, this table and the figures to follow report the
results for A and ns at k0 ¼ 0:002 Mpc�1. Note that Spergel
et al. (2003) report these quantities evaluated at k0 ¼ 0:05
Mpc�1 (using eqs. [14] and [8]). There are 3.2 e-folds
between k0 ¼ 0:002 and 0.05Mpc�1.

We did not find any tensor modes. Table 1 shows 95%
upper limits for the tensor-scalar ratio r at k ¼ 0:002
Mpc�1, for various combinations of the data sets. As we will
see later, there are strong degeneracies present between the
parameters ns, r, and dns=d ln k. For example, one can add
power at low multipoles by increasing r and then remove it
with a bluer ns while keeping the low-‘ amplitude constant.
Thus, one can obtain stronger constraints on r by assuming
different priors on ns and dns=d ln k. In the table we list the
95% CL constraints on r that would be obtained if (1) there
were no priors on ns or dns=d ln k, (2) if one only considers
models with no running of the scalar spectral index, and (3)
if only models with red spectral indices are considered (non-
hybrid inflation models predict red indices in general).

The no-prior r limit r < 0:9, along with the 2 � upper limit
on the amplitude Aðk ¼ 0:002 Mpc�1Þ < 0:75þ 0:08� 2,
implies that the energy scale of inflation V1=4 < 3:3� 1016

GeV at the 95%CL.
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Note that in the case of the WMAP-only Markov chain,
the degeneracy between ns, r, and dns=d ln k is cut off by the
prior � < 0:3 (� is degenerate with ns). Thus, a better upper
limit on � will significantly tighten the constraints on this
model from theWMAP data alone.

All cosmological parameters are consistent with the best-
fit running model of Spergel et al. (2003), which was
obtained for a �CDMmodel with no tensors and a running
spectral index. Adding the extra parameter r does not
improve the fit.

Our constraint on ns shows that the scalar power spec-
trum is nearly scale invariant. One implication of this
result is that fluctuations were generated during acceler-
ated expansion in nearly de Sitter space (Mukhanov
& Chibisov 1981; Hawking 1982; Guth & Pi 1982;
Starobinsky 1982; Bardeen et al. 1983; Mukhanov et al.
1992), where the equation of state of the scalar field is
w ’ �1. Recently, Gratton et al. (2003) have shown that
there is only one other possibility for robustly obtaining
adiabatic fluctuations with nearly scale-invariant spectra:
w41. The ekpyrotic/cyclic scenarios correspond to this
case. Note, however, that predictions for the primordial
perturbation spectrum resulting from the ekpyrotic
scenario are controversial (see, e.g., Tsujikawa,
Brandenberger, & Finelli 2002).

We find a marginal 2 � preference for a running spectral
index in all three data sets: dns=d ln k ¼ �0:055þ0:028

�0:029
(WMAPext+2dFGRS+Ly� data set). This same prefer-
ence was seen in the analysis without tensors carried out in
Spergel et al. (2003).

Figure 2 shows our constraint on ns as a function of k
for the WMAP, WMAPext+2dFGRS, and WMAPext+
2dFGRS+Ly� data sets. At each wavenumber k, we use
equation (8) to convert nsðk0 ¼ 0:002 Mpc�1Þ to ns(k).
Then, we evaluate the mean (solid line), 68% interval (shaded
area), and 95% interval (dashed lines) from the MCMCs.
This shows a hint that the spectral index is running from
blue (ns > 1) on large scales to red (ns < 1) on small scales.
In our MCMCs, for the WMAP data set alone, 91% of
models explored by the chain have a scalar spectral index
running from blue at k ¼ 0:0007 Mpc�1 (‘ � 10) to red at
k ¼ 2 Mpc�1. For the WMAPext+2dFGRS data set, 95%
of models go from a blue index at large scales to a red index
at small scales, and when Ly� forest data are added, the
fraction running from blue to red becomes 96%.

One-loop correction and renormalization usually predict
running mass and/or running coupling constant, giving
some dns=d ln k. Detection of it implies interesting quantum
phenomena during inflation (for a review see Lyth & Riotto
1999). For the running of the scalar spectral index (eq. [22]),

dns
d ln k

¼ �2	V � 2

3

�
ns � 1ð Þ2�4�2V

�
: ð24Þ

Since the data require ns � 1 (see Table 1), ðns � 1Þ2d0:01.
It is especially small when ns � 1 ’ 2�V (see cases A and D
in x 3.4.2). Therefore, if dns=d ln k is large enough to detect,
dns=d ln k > 10�2, then dns=d ln k must be dominated by
2	V, a product of the first and the third derivatives of the
potential (eq. [17]). The hint of dns=d ln k in our data can be
interpreted as 	V ’ �1

2 dns=d ln k ¼ 0:028� 0:015. How-
ever, obtaining the running from blue to red, which is sug-
gested by the data, may require fine-tuned properties in the
shape of the potential. More data are required to determine
whether the hints of a running index are real.

3.4. Single-FieldModels Confront the Data

3.4.1. Testing a Specific InflationModel: ��4

As a prelude to showing constraints on broad classes of
inflationary models, we first illustrate the power of the data
using the example of the minimally coupled V ¼ ��4=4
model, which is often used as an introduction to inflationary
models (Linde 1990). We show that this textbook example is
unlikely.

The Friedmann and continuity equations for a homoge-
neous scalar field lead to the slow-roll parameters, which
one can use in conjunction with the equations of x 3.2.2 in
order to obtain predictions for the observables. For the
potentialVð�Þ ¼ ��4=4, one obtains the PSR parameters as

�V ¼ 8
M2

Pl

�2
; �V ¼ 12

M2
Pl

�2
; 	V ¼ 96

M4
Pl

�4
: ð25Þ

The number of e-foldings remaining until the end of
inflation is defined by

N ¼
Z tend

t

H dt ’ 1

M2
Pl

Z �

�end

V

V 0 d� ¼ 1

8

�2 � �2
end

M2
Pl

� �
; ð26Þ

where �V ð�endÞ ¼ 1 defines the end of inflation. Assuming
�end5�, taking the horizon exit scale as � ’

ffiffiffiffiffiffiffi
8N

p
MPl and

Fig. 2.—This figure shows ns as a function of k for theWMAP (left),WMAPext+2dFGRS (middle), andWMAPext+2dFGRS+Ly� (right) data sets. The
mean (solid line) and the 68% (shaded area) and 95% (dashed lines) intervals are shown. The scales probed byWMAP, 2dFGRS, and Ly� are indicated on the
figure.
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N ¼ 50, one obtains ns ¼ 0:94 and r ¼ 0:32 using equations
(19) and (20). As dns=d ln k is negligible for this model, we
use dns=d ln k ¼ 0.

We maximize the likelihood for this model by running a
simulated annealing code. We fit to WMAPext+2dFGRS
data, varying the parameters �bh

2, �mh
2, h, � , A,13 
,

and �p, while keeping ns, dns=d ln k, and r fixed at the ��4

values. The maximum likelihood model obtained has
(�bh2 ¼ 0:022, �mh2 ¼ 0:135, � ¼ 0:07, A ¼ 0:67, h ¼ 0:69,
�8 ¼ 0:76). This best-fit model is compared in Table 2 to
the corresponding model with the full set of single-field
inflationary parameters. The ��4 model is displaced from
the maximum likelihood generic single-field model by
D�2

eff ¼ 16 [D�2
effðWMAPÞ ¼ 14, D�2

effðCBIþACBARþ
2dFGRSÞ ¼ 2], where �2

eff ¼ �2 lnL and L is the likeli-
hood (see Verde et al. 2003). Since the relative likelihood
between the models is expð�8Þ and the number of degrees of
freedom is approximately 3, ��4 is disfavored at more than
3 �. The table shows that adding external data sets does not
make a significant difference to the D�2

eff between the mod-
els, and the constraint is primarily coming from WMAP
data.

This result holds only for Einstein gravity. When a non-
minimal coupling of the form 	�2R (	 ¼ 1

6 is the conformal
coupling) is added to the Lagrangian, the coupling changes
the dynamics of �. This model predicts only a tiny amount
of tensor modes (Komatsu & Futamase 1999; Hwang &
Noh 1998) in agreement with the data.

One can perform a similar analysis on any given inflation-
ary model to see what constraints the data put on it. Rather
than attempt this Herculean task, in the following section
we simply use our constraints on ns, dns=d ln k, and r and the
predictions of various classes of single-field inflationary
models for these parameters in order to put broad
constraints on them.

3.4.2. Testing a Broad Class of InflationModels

Naively, the parameter space in observables spanned by
the slow-roll parameters appears to be large. We shall show
below that ‘‘ viable ’’ slow-roll inflation models (i.e., those
that can sustain inflation for a sufficient number of
e-folds to solve cosmological problems) actually occupy
significantly smaller regions in the parameter space.

Hoffman & Turner (2001), Kinney (2002a), Easther &
Kinney (2003), Hansen & Kunz (2002), and Caprini,
Hansen, & Kunz (2003) have investigated generic predic-
tions of slow-roll inflation models by using a set of inflation-
ary flow equations (see the Appendix for a detailed
description and definition of conventions). In particular,
Kinney (2002a) and Easther & Kinney (2003) use Monte

Carlo simulations to extend the slow-roll approximations to
fifth order. These authors find ‘‘ attractors ’’ corresponding
to fixed points (where all derivatives of the flow parameters
vanish); models cluster strongly near the power-law infla-
tion predictions, r ¼ 8ð1� nsÞ (see x 3.4.4), and on the zero
tensor modes, r ¼ 0.

Following the method of Kinney (2002a) and Easther &
Kinney (2003), we compute a million realizations of the
inflationary flow equations numerically, truncating the flow
equation hierarchy at eighth order and evaluating the
observables to second order in slow roll using equations
(A15)–(A17). We marginalize over the ambiguity of con-
verting between � and k, introduced by the details of reheat-
ing and the energy density during inflation by adopting the
Monte Carlo approach of the above authors. The observ-
able quantities of a given realization of the flow equations
are evaluated at a specific value of e-folding, N. However,
observable quantities are measured at a specific value of k.
Therefore, we need to relate N to k. This requires detailed
modeling of reheating, which carries an inherent uncer-
tainty. We attempt to marginalize over this by randomly
drawing N-values from a uniform distribution N ¼
½40; 70�.

Figure 3 shows part of the parameter space of viable
slow-roll inflation models, with theWMAP 95% confidence
region shown in blue. Each point on these panels is a
different Monte Carlo realization of the flow equations and
corresponds to a viable slow-roll model. Not all points that
are viable slow-roll models correspond to specific physical
models constructed in the literature. Most of the models
cluster near the attractors, sparsely populating the rest of
the large parameter space allowed by the slow-roll classifica-
tion. It must be emphasized that these scatter plots should
not be interpreted in a statistical sense since we do not know
how the initial conditions for the universe are selected. Even
if a given realization of the flow equations does not sit on
the attractor, this does notmean that it is not favored. Each
point on this plot carries equal weight, and each is a viable
model of inflation. Notice that the WMAP data do not lie
particularly close to the r ¼ 8ð1� nsÞ ‘‘ attractor ’’ solution,
at the 2 � level, but are quite consistent with the r ¼ 0
attractor.

One may categorize slow-roll models into several classes
depending on where the predictions lie on the parameter
space spanned by ns, dns=d ln k, and r (Dodelson, Kinney, &
Kolb 1997; Kinney 1998; Hannestad, Hansen, & Villante
2001). Each class should correspond to specific physical
models of inflation. Hereafter we drop the subscript V
unless there is an ambiguity; it should otherwise be implic-
itly assumed that we are referring to the standard slow-roll
parameters. We categorize the models on the basis of the
curvature of the potential �, as it is the only parameter that
enters into the relation between ns and r (eq. [20]) and
between ns and dns=d ln k þ 2	 (eq. [22]). Thus, � is the most

TABLE 2

Goodness-of-Fit Comparison for ��4
Model

Model �2
eff (WMAP) �2

eff (ext+2dFGRS) Total �2
eff=� (WMAPext+2dFGRS)

Best-fit inflation .............. 1428 36 1464/1379

��4 model ....................... 1442 38 1480/1382

13 While A is an inflationary parameter, it is directly related to the self-
coupling �, which we do not know; thus, we treat it as a parameter.
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important parameter for classifying the observational pre-
dictions of the slow-roll models. The classes are defined as
follows:

Class A: negative curvature models, � < 0.
Class B: small positive (or zero) curvature models,

0 � � � 2�.
Class C: intermediate positive curvature models,

2� < � � 3�.
Class D: large positive curvature models, � > 3�.

Each class occupies a certain region in the parameter space.
Using � ¼ ðns � 1Þ�=½2ð�� 3Þ�, where � ¼ ��, one finds the
following:

Class A: ns < 1, 0 � r < 8=3ð Þð1� nsÞ, �2
3 ð1� nsÞ2 <

dns=d ln k þ 2	 < 0.
Class B: ns < 1, 8=3ð Þð1� nsÞ � r � 8ð1� nsÞ,

�2
3 ð1� nsÞ2 � dns=d ln k þ 2	 � 2ð1� nsÞ2.
Class C: ns < 1, r > 8ð1� nsÞ, dns=d ln k þ 2	 >

2ð1� nsÞ2.
Class D: ns 	 1, r 	 0, dns=d ln k þ 2	 > 0.

To first order in slow roll, the subspace (ns, r) is uniquely
divided into the four classes, and the whole space spanned
by these parameters is defined by this classification. The
division of the other subspace (ns, dns= ln k) is less unique,
and dns=d ln k < �2	 � 2

3 ð1� nsÞ2 is not covered by this
classification. To higher order in slow roll, these boundaries
only hold approximately: for instance, case C can have a
slightly blue scalar index, and case D can have a slightly red
one.

We summarize basic predictions of the above model
classes to first order in slow roll using the relation between r
and ns (eq. [20]) rewritten as

r ¼ 8

3
ð1� nsÞ þ

16

3
� : ð27Þ

This implies the following:

Class A: negative curvature models predict � < 0 and
1� ns > 0; the second term nearly cancels the first to give r
too small to detect.
Class B: small positive curvature models predict

1� ns > 0 and � > 0; a large r is produced.

Class C: intermediate positive curvature models predict
1� ns > 0 and � > 0; a large r is produced.
Class D: large positive curvature models predict

1� ns < 0 and � > 0; the first term nearly cancels the second
to give r too small to detect.

The cancellation of the terms in cases A and D implies
ns � 1 ’ 2�: the steepness of the potential in cases A and D
is insignificant compared to the curvature, �5 �j j. On the
other hand, in cases B and C the steepness is larger than or
comparable to the curvature, by definition; thus, nondetec-
tion of r can exclude many models in cases B and C. As we
have shown in x 3.4.1, a minimally coupled ��4 model,
which falls into case B, is excluded at high significance,
largely as a result of our nondetection of r (see also x 3.4.4).

For an overview, Figure 4 shows the Monte Carlo flow
equation realizations corresponding to the model classes A–
D above on the (ns, r), (ns, dns=d ln k), and (r, dns=d ln k)
planes, for the WMAP, WMAPext+2dFGRS, and
WMAPext+2dFGRS+Ly� data sets.

In Table 3 we show the ranges taken by the observables
ns, r, and dns=d ln k in the Monte Carlo realizations that
remain after throwing out all the points that are outside at
least one of the joint 95% confidence levels. These points
have been separated into the model classes A–D via their
�V. These constraints were calculated as follows. First, we
find theMonte Carlo realizations of the flow equations from
each model class that fall inside all the joint 95% confidence
levels for a given data set, separately for the WMAP,
WMAPext+2dFGRS, and WMAPext+2dFGRS+Ly�
data sets (i.e., the models shown in Fig. 4). Then we find for
each model class the maximum and minimum values pre-
dicted for each of the observables within these subsets.
These constraints mean that only those models (within each
class) predicting values for the observables that lie outside
these limits are excluded by these data sets at 95% CL. Note
that the best-fit model within this parameter space has a
�2
eff=� ¼ 1464=1379. Recall again here that the observables

were evaluated to second order in slow roll in these calcula-
tions. This is the reason that the class C range in ns goes
slightly blue and the class D range in ns goes slightly red; the
divisions of the �V classification are only exact to first order
in slow roll.

Fig. 3.—Part of the parameter space spanned by viable slow-roll inflation models, with theWMAP 68% confidence region shown in dark blue and the 95%
confidence region shown in light blue.
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In the following subsections we will discuss in more detail
the constraints on specific physical models that fall into the
classes A–D. For a given class, we will plot only the flow
equation realizations falling into that category that are con-
sistent with the 95% confidence regions of all the planes (ns,
r), (ns, dns=d ln k), and (r, dns=d ln k).

Note that very few models predict a ‘‘ bad power law,’’ or
dns=d ln kj j > 0:05.

3.4.3. Case A: Negative CurvatureModels � < 0

The top row of Figure 5 shows the Monte Carlo points
belonging to case A, which are consistent with all the joint

95% confidence regions of the observables shown in the
figure, for theWMAPext+2dFGRS+Ly� data set.

The negative � models often arise from a potential of
spontaneous symmetry breaking (e.g., new inflation;
Albrecht & Steinhardt 1982; Linde 1982).

We consider negative curvature potentials in the form of
V ¼ �4½1� ð�=lÞp�, where p 	 2. We require � < l for the
form of the potential to be valid, and � determines the
energy scale of inflation, or the energy stored in a false
vacuum. One finds that this model always gives a red tilt
ns < 1 to first order in slow roll, as ns � 1 ¼ �6�� 2 �j j < 0.

For p ¼ 2, the number of e-folds at � before the end of
inflation is given by N ’ ðl2=2M2

PlÞ lnðl=�Þ, where we have

Fig. 4.—Comparison of the fits from theWMAP (top),WMAPext+2dFGRS (middle), andWMAPext+2dFGRS+Ly� data (bottom) to the predictions of
specific classes of physically motivated inflation models. The color coding shows model classes referred to in the text: (A) red, (B) green, (C) magenta,
(D) black. The dark and light blue regions are the joint 1 and 2 � regions for the specified data sets (contrast this with the one-dimensional marginalized 1 �
errors given in Table 1). We show only Monte Carlo models that are consistent with all three 2 � regions in each data set. This figure does not imply that the
models not plotted are ruled out.
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approximated �end ’ l. By using the same approximation,
one finds ns � 1 ’ �4ðMPl=lÞ2 and r ’ 32ð�2M2

Pl=l
4Þ ’

8ð1� nsÞe�Nð1�nsÞ. In this class of models, ns cannot be very
close to 1 without l becoming larger thanmPl. For example,
ns ¼ 0:96 implies l ’ 10MPl ’ 2mPl. For this class of
models, r has a peak value of r ’ 0:06 at ns ¼ 0:98 (assum-
ing N ¼ 50). Even this peak value is too small for WMAP
to detect. We see from Table 3 that this model is consistent
with the current data but requires l > mPl to be valid.

For p 	 3, ns � 1 ’ �ð2=NÞðp� 1Þ=ðp� 2Þ or 0:92 �
ns < 0:96 for N ¼ 50 regardless of a value of l, and r ’
4p2ðMPl=lÞ2ð�=lÞ2ðp�1Þ is negligible as �5 l. These models
lie in the joint 2 � contour.

The negative � model also arises from the potential in the
form of V ¼ �4½1þ � lnð�=lÞ�, a one-loop correction in a
spontaneously broken supersymmetric theory (Dvali, Shafi,
& Schaefer 1994). Here the coupling constant � should be
smaller than of order 1. In this model � rolls down toward
the origin. One finds ns � 1 ¼ � 1þ 3=2ð Þ�½ �=N, which
implies 0:95 < ns < 0:98 for 1 > � > 0 (this formula is not
valid when � ¼ 0 or � ¼ l). Since r ¼ 8�=N ¼
8� 1þ 3=2ð Þ�½ ��1ð1� nsÞ ¼ 0:016ð�=0:1Þ, the tensor mode
is too small for WMAP to detect, unless the coupling �
takes its maximal value, � � 1. This type of model is
consistent with the data.

3.4.4. Case B: Small Positive CurvatureModels 0 � � � 2�

The second row of Figure 5 shows the Monte Carlo
points belonging to case B, which are consistent with all the
joint 95% confidence regions of the observables shown in
the figure.

The ‘‘ small ’’ positive � models correspond to monomial
potentials for 0 < � < 2� and exponential potentials for
� ¼ 2�. The monomial potentials take the form of
V ¼ �4ð�=lÞp, where p 	 2, and the exponential potentials
V ¼ �4 expð�=lÞ. The zero �model isV ¼ �4ð�=lÞ. To first
order in slow roll, the scalar spectral index is always red, as
ns � 1 ¼ �6�þ 2� � �4� < 0. The zero � model marks a
border between the negative � models and the positive �
models, giving r ¼ 8=3ð Þð1� nsÞ.

The monomial potentials often appear in chaotic inflation
models (Linde 1983), which require that � be initially dis-
placed from the origin by a large amount, �mPl, in order to
avoid fine-tuned initial values for �. Themonomial potentials
can have a period of inflation at �emPl, and inflation ends
when � rolls down to near the origin. For p ¼ 2,
inflation is driven by the mass term, which gives � ¼
2
ffiffiffiffiffi
N

p
MPl, ns ¼ 1� 2=N ¼ 0:96, r ¼ 8=N ¼ 4ð1� nsÞ ¼

0:16, and dns=d lnk ¼ �2=N2 ¼ �ð1� nsÞ2=2 ¼ �0:8�
10�3. For p ¼ 4, inflation is driven by the self-coupling,
which gives � ¼ 2

ffiffiffiffiffiffiffi
2N

p
MPl, ns ¼ 1� 3=N ¼ 0:94, r ¼

16=N ¼ 16=3ð Þð1� nsÞ ¼ 0:32, and dns=d ln k ¼ �3=N2 ¼
�ð1� nsÞ2=3 ¼ �1:2� 10�3. The most striking feature of
the small positive � models is that the gravitational wave
amplitude can be large, r 	 0:16. Our data suggest that, for
monomial potentials to lie within the joint 95% contour,
r < 0:26 (Table 3). A ��4 model is excluded at�3 � (x 3.4.1),
and any monomial potentials with p > 4 are also excluded at
high significance. Models with p ¼ 2 (mass term inflation)
are consistent with the data.

The exponential potentials appear in the Brans-Dicke
theory of gravity (Brans & Dicke 1961; Dicke 1962) con-
formally transformed to the Einstein frame (the extended
inflation models; La & Steinhardt 1989). One finds
ns ¼ 1� ðl=MPlÞ2, r ¼ 8ð1� nsÞ, and dns=d ln k ¼ 0. Thus,
the exponential potentials predict an exact power-law spec-
trum and significant gravitational waves for significantly
tilted spectra. Since l ¼ NM2

Pl=ð�� �endÞ, ns ¼ 1� ½NMPl=
ð�� �endÞ�2. The 95% range for ns in Table 3 implies that
�� �end > 4NMPl ’ 200MPl ’ 40mPl.

The exponential potentials mark a border between the
small positive � models and the positive intermediate �
models described below.

3.4.5. Case D: Large Positive CurvatureModels � > 3�

Before describing case C, it is useful to describe case D
first. The fourth row of Figure 5 shows the Monte Carlo
points belonging to case D, which are consistent with all the
joint 95% confidence regions of the observables shown in
the figure.

TABLE 3

Properties of Inflationary Models Present within the Joint 95% Confidence Region

Model WMAP WMAPext+2dFGRS WMAPext+2dFGRS+Ly�

A...................... (4� 10�6)a�r� 0.14 (2� 10�6)a� r� 0.19 (4� 10�6)a� r� 0.16

0.94� ns� 1.00 0.93� ns� 1.00 0.94� ns� 1.00

�0.02� dns=d ln k� 0.02 �0.04� dns=d ln k� 0.02 �0.02� dns=d ln k� 0.004

B ...................... (7� 10�3)a� r� 0.35 (7� 10�3)a� r� 0.32 (7� 10�3)a� r� 0.26

0.94� ns� 1.01 0.93� ns� 1.01 0.94� ns� 1.01

�0.02� dns=d ln k� 0.02 �0.04� dns=d ln k� 0.02 �0.02� dns=d ln k� 0.01

C...................... (0.003)a� r� 0.59 (0.003)a� r� 0.52 (0.03)a� r� 0.46

0.95� ns� 1.02 0.96� ns� 1.02 0.97� ns� 1.02

�0.04� dns=d ln k� 0.01 �0.04� dns=d ln k� 0.01 �0.04� dns=d ln k� 0.001

D ..................... 0.0� r� 1.10 0.0� r� 0.89 (8� 10�5)a� r� 0.89

0.99� ns� 1.28 1.00� ns� 1.28 1.00� ns� 1.28

�0.09� dns=d ln k� 0.03 �0.09� dns=d ln k� 0.01 �0.09� dns=d ln k��0.001

Note.—The ranges taken by the predicted observables of slow-roll models (to second order in slow roll)
within the joint 95% CLs from the specified data sets. The model classes are � < 0 for case A, 0 � � � 2� for
case B, 2� < � � 3� for case C, and � > 3� for case D.

a The lower value of r does not represent a detection, but rather the minimal level of tensors predicted by any
point in the Monte Carlo that falls within this class and is consistent with the data. We include the lower limit
to help set goals for future CMB polarization missions.
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Fig. 5.—Comparison of the fits from the WMAPext+2dFGRS+Ly� data to the predictions of all four classes of inflation models. The top row is class A
(red dots). The second row is class B (green dots). The third row is class C (magenta dots). The bottom row is class D (black dots). The dark and light blue regions
are the joint 1 and 2 � regions for theWMAPext+2dFGRS+Ly� data. We show only Monte Carlo models that are consistent with 2 � regions in all panels.
This figure does not imply that the models not plotted are ruled out.



The ‘‘ large ’’ positive curvature models correspond to
hybrid inflation models (Linde 1994), which have recently
attracted much attention as an R-invariant supersymmetric
theory naturally realizes hybrid inflation (Copeland et al.
1994; Dvali et al. 1994). While it is pointed out that super-
gravity effects add too large an effective mass to the inflaton
field to maintain inflation, the minimal Kähler supergravity
does not have such a large mass problem (Copeland et al.
1994; Linde & Riotto 1997). The distinctive feature of this
class of models with � > 3� is that the spectrum has a blue
tilt, ns � 1 ¼ �6�þ 2� > 0, to first order in slow roll.

A typical potential is a monomial potential plus a con-
stant term, V ¼ �4½1þ ð�=lÞp�, which enables inflation to
occur for a small value of �, � < mPl. At first sight, infla-
tion never ends for this potential, as the constant term
sustains the exponential expansion forever. Hybrid infla-
tion models postulate a second field �, which couples to
�. When � rolls slowly on the potential, � stays at the
origin and has no effect on the dynamics. For a small
value of � inflation is dominated by a false vacuum term,
Vð�; � ¼ 0Þ ’ �4. When � rolls down to some critical
value, � starts moving toward a true vacuum state,
Vð�; �Þ ¼ 0, and inflation ends. A numerical calculation
(Linde 1994) suggests that the potential is described by �
only until � reaches a critical value. When � reaches the
critical value, inflation suddenly ends and � need not be
considered. Thus, we include the hybrid models in our
discussion of single-field models.

For p ¼ 2, one finds thatN ’ 1
2 ðl=MPlÞ2 lnð�=�endÞ ’ 50,

which, in turn, implies l � 10MPl ’ 2mPl for lnð�=�endÞ �
1. The spectral slope is estimated as ns ’ 1þ 4ðMPl=lÞ2 �
1:04, and the tensor/scalar ratio, r ’ 32ð�=lÞ2ðMPl=lÞ2 ¼
8ð�=lÞ2ðns � 1Þ, is negligible as inflation occurs at �5 l.
The running is also negligible, as dns=d ln k ’
64ð�=lÞ2ðMPl=lÞ4 ¼ 4ð�=lÞ2ðns � 1Þ25 10�2. This type of
model lies within the joint 95% contours.

One-loop correction in a softly broken supersym-
metric theory induces a logarithmically running mass,
V ¼ �4f1þ ð�=lÞ2 1þ � lnð�=QÞ½ �g, where � is a coupling
constant and Q is a renormalization point. Since ns is
practically determined by V00, this potential gives rise to a
logarithmic running of ns (Lyth & Riotto 1999). These
models would lie in the region occupied by the Monte Carlo
points that have a large, negative dns=d ln k. This type of
model is consistent with the data.

3.4.6. Case C: Intermediate Positive CurvatureModels 2� < � � 3�

The third row of Figure 5 shows the Monte Carlo points
belonging to case C, which are consistent with all the joint
95% confidence regions of the observables shown in the
figure.

The ‘‘ intermediate ’’ positive curvature models are
defined, to first order in slow roll, as having a red tilt,
ns � 1 ¼ �6�þ 2� < 0, or the exactly scale-invariant spec-
trum, ns � 1 ¼ 0, while not being described by monomial or
exponential potentials. These conditions lead to a parame-
ter space where 2� < � � 3�. Here we discuss only examples
of physical models that do not solely live in case C but
briefly pass through it as they transition from case D to case
B or case A.

The transition from case D to case B may correspond to a
special case of hybrid inflation models described in the pre-
vious subsection (case D), V ¼ �4½1þ ð�=lÞp�. When �4l,

the potential becomes case B potential, V ! �4ð�=lÞp, and
the spectrum is red, ns < 1. When �5 l, the potential drives
hybrid inflation, and the spectrum is blue, ns > 1. On the
other hand, when � � l, the potential takes a parameter
space somewhere between cases B and D, which corre-
sponds to case C. One may argue that this model requires
fine-tuned properties in that we just transition from one
regime to the other. However, the case C regime has an
interesting property: the spectral index ns runs from red on
large scales to blue on small scales, as � undergoes the tran-
sition from case B to case D. This example has the wrong
sign for the running of the index compared to the data at the
�2 � level.

The work of Linde & Riotto (1997) is one example of a
transition from case D to case A. They consider a super-
gravity-motivated hybrid potential with a one-loop
correction, which can be approximated during inflation as

V ’ �4 1þ � ln
�

Q

� �
þ �

�

l

� �4
" #

: ð28Þ

Suppose that the one-loop correction is negligible in some
early time, i.e., � ’ Q. The spectrum is blue. (The third term
is practically unimportant, as inflation is driven by the first
term at this stage.) If the loop correction becomes important
after several e-folds, then ns changes from blue to red, as the
loop correction gives a red tilt as we saw in x 3.4.3. This
example is consistent with the data. The transition (from
case D to case A) is possible only when � and Q conspire to
balance the first term and the second term right at the scale
accessible to our observations.

4. MULTIPLE-FIELD INFLATION MODELS

4.1. Framework

In general, a candidate fundamental theory of particle
physics such as a supersymmetric theory requires not only
one but many other scalar fields. It is thus naturally
expected that during inflation there may exist more than
one scalar field that contributes to the dynamics of inflation.

In most single-field inflation models, the fluctuations pro-
duced have an almost scale-invariant, Gaussian, purely
adiabatic power spectrum whose amplitude is characterized
by the comoving curvature perturbation, R̂R, which remains
constant on superhorizon scales. They also predict tensor
perturbations with the consistency condition in equation
(21).

With the addition of multiple fields, the space of possible
predictions widens considerably. The most distinctive
feature is the generation of entropy, or isocurvature,
perturbations between one field and the other. The entropy
perturbation, ŜS, can violate the conservation of R̂R on
superhorizon scales, providing a source for the late-time
evolution of R̂R that weakens the single-field consistency
condition into an upper bound on the tensor/scalar ratio
(Polarski & Starobinsky 1995; Sasaki & Stewart 1996;
Garcia-Bellido & Wands 1996). Limits on the possible level
of the entropy perturbation thus discriminate between the
multiple-field models and the single-field models. In this
section we consider the minimal extension to single-field
inflation, a model consisting of two minimally coupled
scalar fields.
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4.2. Correlated Adiabatic/Isocurvature Fluctuations
fromDouble-Field Inflation

The WMAP data confirm that pure isocurvature fluctua-
tions do not dominate the observed CMB anisotropy. They
predict large-scale temperature anisotropies that are too large
with respect to the measured density fluctuations and have
the wrong peak/trough positions in the temperature and
polarization power spectra (Hu & White 1996; Page et al.
2003). The WMAP observations limit but do not preclude
the possibility of correlated mixtures of isocurvature and
adiabatic perturbations, which is a generic prediction of two-
field inflation models. Both isocurvature and adiabatic per-
turbations receive significant contributions from at least one
of the scalar fields to produce the correlation (Langlois 1999;
Pierpaoli, Garcia-Bellido, & Borgani 1999; Langlois &
Riazuelo 2000; Gordon et al. 2001; Bartolo, Matarrese, &
Riotto 2001, 2002; Amendola et al. 2002; Wands et al. 2002).
We focus on these mixedmodels in this section.

Let R̂Rrad and ŜSrad be the curvature and entropy perturba-
tions deep in the radiation era, respectively. At large scales,
the temperature anisotropy is given by (Langlois 1999)

DT

T
¼ 1

5
R̂Rrad � 2ŜSrad

� 	
; ð29Þ

in addition to the integrated Sachs-Wolfe effect. The
entropy perturbation, ŜSrad � 
�CDM=�CDM � 3

4 
��=�� ,
remains constant on large scales until reentry into the hori-
zon. If R̂Rrad and ŜSrad have the same sign (correlated), then
the large-scale temperature anisotropy is reduced. If they
have opposite signs (anticorrelated), then the temperature
anisotropy is increased. Spergel et al. (2003) find that there
is an apparent lack of power at the very largest scales in the
WMAP data; thus, one of the motivations of this study is to
see whether a correlated ŜSrad can provide a better fit to the
WMAP low-‘ data than a purely adiabatic model.

The evolution of the curvature/entropy perturbations
from horizon-crossing to the radiation-dominated era can
be parameterized by a transfer matrix (Amendola et al.
2002),

R̂Rrad

ŜSrad

 !
¼

1 TRS

0 TSS

� �
R̂R

ŜS


 !
k¼aH

: ð30Þ

Here TRR ¼ 1 and TSR ¼ 0 because of the physical require-
ment that R̂R is conserved for purely adiabatic perturbations
and that R̂R cannot source ŜS. All the quantities in equation
(30) are weakly scale dependent and may be parameterized
by power laws. Hence, we write this equation as

R̂Rrad ¼ Ark
n1 âar þ Ask

n3 âas ; ð31Þ

ŜSrad ¼ Bkn2 âas ; ð32Þ

where âar and âas are independent Gaussian random variables
with unit variance, hâarâasi ¼ 
rs. The cross-correlation
spectrum is given by D2

RSðkÞ � ðk3=2�2ÞhR̂RradŜSradi ¼
AsBkn2þn3 . One may define the correlation coefficient using
an angle D as

cosD �


R̂RradŜSrad

�


R̂R

2
rad

�1=2

ŜS

2
rad

�1=2 ¼ signðBÞAskn3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

r k2n1 þ A2
s k2n3

p ; ð33Þ

where �1 � cosD � 1. Thus, in general, six parameters (Ar,

As, cosD, n1, n2, n3) are needed to characterize the double-
inflation model with correlated adiabatic/isocurvature
perturbations, while cosD is scale dependent. In order to
simplify our analysis, we neglect the scale dependence of
cosD; thus, n1 ¼ n3 6¼ n2 and cosD ¼ signðBÞAs=A. The

power spectra are written as D2
RðkÞ � ðk3=2�2ÞhR̂R2

radi ¼
ðA2

r þ A2
s Þk2n1 � A2knad�1 and D2

SðkÞ � ðk3=2�2ÞhŜS2
radi ¼

B2k2n2 � A2f 2isok
niso�1. We have defined nad � 1 � 2n1 and

niso � 1 � 2n2 to coincide with the standard notation for the
scalar spectral index. The ‘‘ isocurvature fraction ’’ defined
by fiso � B=A determines the relative amplitude of ŜS to R̂R.
The cross-correlation spectrum is then written as
D2
RSðkÞ ¼ cosD½D2

RðkÞD2
SðkÞ�

1=2 ¼ A2fiso cosDkðnadþnisoÞ=2�1.
The temperature and polarization anisotropies are given

by these power spectra,

Cad
‘ / A2

Z
dk

k

k

k0

� �nad�1

gad‘ ðkÞ
� �2

; ð34Þ

Ciso
‘ / A2f 2iso

Z
dk

k

k

k0

� �niso�1

giso‘ ðkÞ
� �2

; ð35Þ

Ccorr
‘ / A2fiso cosD

Z
dk

k

k

k0

� �ðnadþnisoÞ=2�1

� gad‘ ðkÞgiso‘ ðkÞ
� �

; ð36Þ

and the total anisotropy is Ctot
‘ ¼ Cad

‘ þ Ciso
‘ þ 2Ccorr

‘ . Here
g‘(k) is the radiation transfer function appropriate to adia-
batic or isocurvature perturbations of either temperature or
polarization anisotropies. Note that the quantities nad, niso,
and fiso are defined at a specific wavenumber k0, which we
take to be k0 ¼ 0:05 Mpc�1 in the MCMC. To translate the
constraint on fiso to any other wavenumber, one uses

fisoðk1Þ ¼ fisoðk0Þ
k1
k0

� �ðniso�nadÞ=2
: ð37Þ

We can restrict fiso 	 0 without loss of generality. Since we
can remove A by normalizing to the overall amplitude of
fluctuations in the WMAP data, we are left with four
parameters, nad, niso, fiso, and cosD. We neglect the contribu-
tion of tensor modes, as the addition of tensors goes in the
opposite direction in terms of explaining the low amplitude
of the low-‘ TT power spectrum. We also neglect the scale
dependence of nad and niso, as they are not well constrained
by our data sets.

We fit to the WMAPext+2dFGRS and WMAPext+
2dFGRS+Ly� data sets with the 11-parameter model
(�bh

2, �mh
2, h, � , nad, niso, fiso, cosD, A, 
, �p). The results of

the fit for the double inflation model parameters are shown
in Table 4. Figure 6 shows the cumulative distribution of
fiso. The best-fit nonprimordial cosmological parameter
constraints are very similar to the single-field case.

While the fit tries to reduce the large-scale anisotropy
with an admixture of correlated isocurvature modes as
expected (note that cosD < 0 corresponds to R̂Rrad and ŜSrad
having the same sign, from the definition of initial condi-
tions in the CMBFAST code), this only leads to a small
reduction in amplitude at the quadrupole. Table 5 compares
the goodness of fit for this model along with the maximum
likelihood models for the �CDM and single-field inflation
cases. Because �2

eff=� is not improved by the addition of
three new parameters and considerable physical complexity,
we conclude that the data do not require this model. This
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implies that the initial conditions are consistent with being
fully adiabatic.

5. SMOOTHNESS OF THE INFLATON POTENTIAL

Spergel et al. (2003) point out that there are several sharp
features in the WMAP TT angular power spectrum that
contribute to the reduced �2

eff for the best-fit model being
�1.09. The large �2

eff may result from neglecting 0.5%–1%
contributions to theWMAPTT power spectrum covariance
matrix: for example, gravitational lensing of the CMB,
beam asymmetry, and non-Gaussianity in noise maps.
When included, these effects will likely improve the reduced
�2
eff of the best-fit �CDMmodel. At the moment we cannot

attach any astrophysical reality to these features. Similar
features appear inMonte Carlo simulations.

While we do not claim that these glitches are cosmologi-
cally significant, it is intriguing to consider what they might
imply if they turn out to be significant after further scrutiny.

In this section we investigate whether the reduced �2
eff is

improved by trying to fit one or more of these ‘‘ glitches ’’
with a feature in the inflationary potential. Adams, Ross, &
Sarkar (1997) show that a class of models derived from
supergravity theories naturally gives rise to inflaton poten-
tials with a large number of sudden downward steps. Each
step corresponds to a symmetry-breaking phase transition
in a field coupled to the inflaton, since the mass changes sud-
denly when each transition occurs. If inflation occurred in
the manner suggested by these authors, a spectral feature is
expected every 10–15 e-folds. Therefore, one of these fea-
tures may be visible in the CMB or large-scale structure
spectra.

We use the formalism adopted by Adams, Cresswell, &
Easther (2001) andmodel the step by the potential

Vstepð�Þ ¼
1

2
m2�2 1þ c tanh

�� �s

d

� �� 

; ð38Þ

where � is the inflaton field and the potential has a step start-
ing at �s with amplitude and gradient determined by c and
d, respectively. In physically realistic models, the presence
of the step does not interrupt inflation but affects density
perturbations by introducing scale-dependent oscillations.
Adams et al. (2001) describe the phenomenology of these
models: the sharper the step, the larger the amplitude and
longevity of the ‘‘ ringing.’’ For our calculations of the
power spectrum in these models, we numerically integrate
the Klein-Gordon equation using the prescription of Adams
et al. (2001).

We also phenomenologically model a dip in the inflaton
potential using a toy model of a Gaussian dip centered at �s

TABLE 4

Cosmological Parameters: Adiabatic plus Isocurvature Model

Parameter WMAPext+2dFGRS WMAPext+2dFGRS+Ly�

fiso(k0 ¼ 0:05Mpc�1) ..................... <0.32a <0.33a

nad.................................................. 0.97� 0.03 0.95� 0.03

niso ................................................. 1:26þ0:51
�0:57 1:29þ0:50

�0:56

cosD .............................................. �0:76þ0:18
�0:14 �0:76þ0:18

�0:16

A(k0 ¼ 0:05Mpc�1) ....................... 0.82� 0.10 0.78� 0.08

�bh
2 ............................................... 0.023� 0.001 0.023� 0.001

�mh
2............................................... 0.133� 0.007 0.131� 0.006

h..................................................... 0.072� 0.04 0.072� 0.04

� ..................................................... 0.16� 0.06 0.14� 0.06

�8 ................................................... 0.84� 0.06 0.81� 0.04

a The constraint on the isocurvature fraction, fiso, is a 95% upper limit.

Fig. 6.—Cumulative distribution of the isocurvature fraction, fiso, for
theWMAPext+2dFGRS+Ly� data set.

TABLE 5

Goodness-of-Fit Comparison for Adiabatic/

Isocurvature Model

Model �2
eff=�

a

�CDM....................................... 1468/1381

Single-field inflation ................... 1464/1379

Adiabatic/isocurvature.............. 1468/1378

a These �2
eff values are for the WMA-

Pext+2dFGRS data set. Here we do not give
�2
eff for the Ly� data, as the covariance between

the data points is not known (Verde et al. 2003).
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with height c and width d:

Vdipð�Þ ¼
1

2
m2�2 1� c exp

ð�� �sÞ2

2d2

" #( )
: ð39Þ

We fix the nonprimordial cosmological parameters at the
maximum likelihood values for the �CDM model fitted to
the WMAPext data, (�bh2 ¼ 0:022, �mh2 ¼ 0:13, � ¼ 0:11,
A ¼ 0:74, h ¼ 0:72). We then run simulated annealing codes
for only the three parameters, �s, c, and d, for each poten-
tial, fitting to the WMAP TT and TE data only. For this
section, since this model predicts sharp features in the
angular power spectrum, we had to modify the standard
CMBFAST splining resolution, splining at D‘ ¼ 1 for
2 � ‘ < 50 and D‘ ¼ 5 for ‘ 	 50.

The best-fit parameters found for each potential are given
in Table 6, along with the �2

eff for the WMAP TT and TE
data. Figure 7 shows these models plotted along with the
WMAP TT data. The best-fit models predict features in the
TE spectrum at specific multipoles, which are well below
detection, given the current uncertainties. The step model
differs from the �CDM model by D�2

eff ¼ 9, the dip model
by D�2

eff ¼ 5. We are not claiming that these are the best
possible models in this parameter space, only that these are
the best-fit models found in eight simulated annealing runs.
Note that the models with features were not allowed the
freedom to improve the fit by adjusting the cosmological
parameters.

A very small fractional change in the inflaton potential
amplitude, c � 0:1%, is sufficient to cause sharp features in
the angular power spectrum. Models with much larger c

would have dramatic effects that are not seen in theWMAP
angular power spectrum.

These models also predict sharp features in the large-scale
structure power spectrum. Figure 8 shows the matter power
spectra for the best-fit step/dip models. Forthcoming large-
scale structure surveys may look for the presence of such
features and test the viability of these models.

6. CONCLUSIONS

WMAP has made six key observations that are of
importance in constraining inflationary models:

1. The universe is consistent with being flat (Spergel et al.
2003).
2. The primordial fluctuations are described by random

Gaussian fields (Komatsu et al. 2003).
3. We have shown that the WMAP detection of an anti-

correlation between CMB temperature and polarization
fluctuations at � > 2� is a distinctive signature of adiabatic
fluctuations on superhorizon scales at the epoch of
decoupling. This detection agrees with a fundamental
prediction of the inflationary paradigm.
4. In combination with complementary CMB data (the

CBI and theACBARdata), the 2dFGRS large-scale structure
data, and Ly� forest data,WMAP data constrain the primor-
dial scalar and tensor power spectra predicted by single-field
inflationary models. For the scalar modes, the mean and the
68% error level of the one-dimensional marginalized likeli-
hood for the power spectrum slope and the running of the
spectral index are, respectively, nsðk0 ¼ 0:002 Mpc�1Þ ¼
1:13� 0:08 and dns=d ln k ¼ �0:055þ0:028

�0:029. This value is in

agreement with dns=d ln k ¼ �0:031þ0:016
�0:018 of Spergel et al.

(2003), which was obtained for a �CDM model with no ten-
sors and a running spectral index. The data suggest at the 2 �
level, but do not require, that the scalar spectral index runs
from ns > 1 on large scales to ns < 1 on small scales. If
true, the third derivative of the inflaton potential would be
important in describing its dynamics.
5. The WMAPext+2dFGRS constraints on ns,

dns=d ln k, and r put limits on single-field inflationary
models that give rise to a large tensor contribution and a red
(ns < 1) tilt. A minimally coupled ��4 model lies more than

TABLE 6

Best-Fit Models with Potential Features

Model �s(MPl) c d(MPl) WMAP �2
eff=�

Step................... 15.5379 0.00091 0.01418 1422/1339

Dip ................... 15.51757 0.00041 0.00847 1426/1339

�CDM.............. . . . . . . . . . 1431/1342

Note.—We give as many significant figures as are needed in order to
reproduce our results.

Fig. 7.—Best-fit models (solid line) with a step (left) and a dip (right) in the inflaton potential, with the WMAP TT data. The best-fit �CDM model to
WMAPext data is shown (dotted line) for comparison.
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3 � away from the maximum likelihood point. The contribu-
tion to the D�2 between the two points from WMAP alone
is 14.
6. We test two-field inflationary models with an admix-

ture of adiabatic and CDM isocurvature components. The
data do not justify adding the additional parameters needed
for this model, and the initial conditions are consistent with
being purely adiabatic.

WMAP both confirms the basic tenets of the inflationary
paradigm and begins to quantitatively test inflationary
models. However, we cannot yet distinguish between broad
classes of inflationary theories that have different physical
motivations. In order to go beyond model building and

learn something about the physics of the early universe, it is
important to be able to make such distinctions at high sig-
nificance. To accomplish this, one requirement is a better
measurement of the fluctuations at high ‘ and a better mea-
surement of � , in order to break the degeneracy between ns
and � .

We note that an exact scale-invariant spectrum (ns ¼ 1
and dns=d ln k ¼ 0) is not yet excluded at more than the 2 �
level. Excluding this point would have profound
implications in support of inflation, as physical single-field
inflationary models predict nonzero deviation from exact
scale invariance.

We conclude by showing the tensor temperature and
polarization power spectra for the maximum likelihood
single-field inflation model for the WMAPext+2dFGRS+
Ly� data set, which has tensor/scalar ratio r ¼ 0:42
(Fig. 9). The detection and measurement of the gravity-
wave power spectrumwould provide the next important key
test of inflation.
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Fig. 8.—Large-scale structure power spectra for the best-fit potential step (left) and dip (right) models

Fig. 9.—Tensor power spectrum for the maximum likelihood model
from a fit to WMAPext+2dFGRS data sets. The plot shows the TT (solid
line), EE (dotted line), and BB (short-dashed line) and the absolute value of
TE negative (dot-dashed line) and positive (long-dashed line) tensor spectra.
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APPENDIX

INFLATIONARY FLOW EQUATIONS

We begin by describing the hierarchy of inflationary flow equations described by the generalized ‘‘Hubble slow-roll ’’
(HSR) parameters. In the Hamilton-Jacobi formulation of inflationary dynamics, one expresses the Hubble parameter
directly as a function of the field � rather than a function of time, H � Hð�Þ, under the assumption that � is monotonic in
time. Then the equations of motion for the field and background are given by

_�� ¼ �2M2
PlH

0ð�Þ ; ðA1Þ

H 0ð�Þ½ �2� 3

2M2
Pl

H2ð�Þ ¼ � 1

2M4
Pl

Vð�Þ : ðA2Þ

Here primes denote derivatives with respect to �. Equation (A2), referred to as the Hamilton-Jacobi equation, allows us to
consider inflation in terms of H(�) rather than V(�). The former, being a geometric quantity, describes inflation more
naturally. GivenH(�), equation (A2) immediately givesV(�), and one obtainsH(t) by using equation (A1) to convert between
H0 and _HH. This can then be integrated to give a(t) if desired, sinceHðtÞ � _aa=a. Rewriting equation (A2) as

H2ð�Þ 1� 1

3
�H

� �
¼ 1

3M2
Pl

Vð�Þ ; ðA3Þ

we obtain

€aa

a

� �
¼ 1

3M2
Pl

Vð�Þ � _��2
� �

¼ H2ð�Þ½1� �Hð�Þ� ;

so that the condition for inflation ð€aa=aÞ > 0 is simply given by �H < 1.
Thus, one can define a set of HSR parameters in analogy to the PSR parameters of x 3.2.2, although there is no assumption

of slow roll implicit in this definition:

�H � 2M2
Pl

H 0ð�Þ
Hð�Þ

� 
2
; ðA4Þ

�H � 2M2
Pl

H 00ð�Þ
Hð�Þ

� 

; ðA5Þ

	H � 4M4
Pl

H 0ð�ÞH 000ð�Þ
H2ð�Þ

� 

; ðA6Þ

‘�H � 2MPlð Þ‘ H 0ð Þ‘�1

H‘

dð‘þ1ÞH

d�ð‘þ1Þ : ðA7Þ

We need one more ingredient: the number of e-folds before the end of inflation,N, is defined by

N �
Z te

t

H dt ¼
Z �e

�

H
_��
d� ¼ 1ffiffiffi

2
p

MPl

Z �

�e

d�ffiffiffiffiffiffiffiffiffiffiffiffi
�Hð�Þ

p ; ðA8Þ

where te and �e are the time and field value at the end of inflation, respectively, andN increases the earlier one goes back in time
(t > 0 ) dN < 0). The derivative with respect toN is therefore

d

dN
¼

ffiffiffi
2

p
MPl

ffiffi
�

p d

d�
: ðA9Þ

Then, an infinite hierarchy of inflationary ‘‘ flow ’’ equations can be defined by differentiating equations (A4)–(A7) with
respect toN:

d�H
dN

¼ 2�Hð�H � �HÞ ; ðA10Þ

d ‘�Hð Þ
dN

¼ ð‘� 1Þ�H � ‘�H½ � ‘�H

� �
þ ‘þ1�H ð‘ > 0Þ : ðA11Þ

The definitions of the scalar and tensor power spectra are

D2
R ¼ H

_��

� �
H

2�

� �� 
2
k¼aH

; ðA12Þ
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D2
h ¼ 8

M2
Pl

H

2�

� �2

k¼aH

: ðA13Þ

Since derivatives with respect to wavenumber k can be expressed with respect toN as

d

dN
¼ �ð1� �HÞ

d

d ln k
; ðA14Þ

the observables are given in terms of the HSR parameters to second order as (Stewart & Lyth 1993; Liddle, Parsons, & Barrow
1994)

r ¼ 16�H 1þ 2Cð�H � �HÞ½ � ; ðA15Þ
ns � 1 ¼ 2�H � 4�Hð Þ 1� 1

4 ð3� 5CÞ�H
� �

� ð3� 5CÞ�2H þ 1
2 ð3� CÞ	H ; ðA16Þ

dns
d ln k

¼ � 1

1� �H

� �
dns
dN

; ðA17Þ

where C � 4ðln 2þ �Þ � 5 and � ’ 0:577 is Euler’s constant. Note that, as pointed out in Kinney (2002b), there is a
typographical error in defining C in Liddle et al. (1994) that was inherited by Kinney (2002a). We have used the correct value
from Stewart & Lyth (1993).

Finally, the PSR parameters are given in terms of the HSR parameters to first order in slow roll as

�H ¼ �V ; ðA18Þ
�H ¼ �V � �V ; ðA19Þ

	H ¼ 	V � 3�V�V þ 3�2V : ðA20Þ
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